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Airline Industry Factors

Increasing demand for air travel and air freight

Increasing and volatile fuel prices

Environmental pressures

Source: US Global Change Research Program
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Environmental Goals

Source: ICAO Environmental Report 2010
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The Blended-Wing-Body (BWB)

The tube-and-wing design has served us well for over 60 years...

... But is a step change in configuration design required?
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Design Benefits

Aerodynamic
High wetted aspect ratio gives high lift-to-drag ratio
Natural ‘area-ruling’ improves high-speed performance

Structural
Natural spanloading reduces bending loads

Propulsive
Boundary-layer ingesting engines reduce fuel-burn

Acoustic
Body-mounted engines are acoustically shielded
Low landing speed reduces airframe noise

Liebeck, JoA, Vol. 41, No. 1, 2004
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Design Benefits

Aerodynamic
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Natural ‘area-ruling’ improves high-speed performance

Structural
Natural spanloading reduces bending loads

Propulsive
Boundary-layer ingesting engines reduce fuel-burn

Acoustic
Body-mounted engines are acoustically shielded
Low landing speed reduces airframe noise
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Design Challenges

Aerodynamic
Shock-free airfoils with sufficient thickness
Maintaining stability and control without a tail

Structural
Design of non-cylindrical pressure vessel for the cabin
More complicated load-paths

Propulsive
Robust boundary-layer ingesting engine technology

Passenger comfort
Ride quality

Mukhopadhyay, 2012
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The Regional Jet Segment

Comprises 30% of global aircraft fleet

Fastest growing segment over the past 30 years

RAA 2011 Annual Report 21
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US Regional Aircraft Fleet

Scheduled Passenger Aircraft by Type 
(see airline breakdown page 23)

average seating capacity of regional aircraft
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“I see a day when the regional carrier is the face of a large and growing number of 

small communities and not the mainline carrier as it is today...The regional sector will 

increasingly become a large and larger face of the domestic market...but it will be done 

with an increasing level of flying being done ‘at risk’. I can see a day when the regional 

carriers of today are buyers of mainline domestic hubs. Consolidation inside the regional 

sector is building companies with significant scope and scale on the operating side...”

 
Bill Swelbar, swelbar.org

at the RAA Fall Meeting December 2010

Source: Regional Airline Association 2011 Annual Report
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Design Problem

Passengers 100†

Cargo volume 683 ft3

Payload 23,380 lbs
Max range 2,000 nmi
Cruise speed 0.80 Mach
† Single class at 31” pitch

Similar mission to the CRJ1000ER and E-190
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Aerodynamic Shape Optimization

Range =
aM

cT

L

D
ln

(
W0 + Wfuel

W0

) Flight condition effects
Propulsive effects
Aerodynamic effects
Structural effects

Drag reduction under inviscid flow

Flow model: Euler equations
Minimize induced drag
Eliminate wave drag

Drag reduction under turbulent flow

Flow model: Reynolds-Averaged Navier-Stokes equations
Minimize induced drag
Eliminate wave drag
Minimize profile drag
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Aerodynamic Shape Optimization

Geometry parameterization and
mesh movement

B-spline geometry
parameterization

Linear elastic mesh movement
algorithm applied to the
B-spline grid

Robust for large shape
changes
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Aerodynamic Shape Optimization

Flow solver

Newton-Krylov-Schur parallel
multiblock implicit flow solver

Euler and Reynolds-Average
Navier-Stokes equations with
the one-equation
Spalart-Allmaras turbulence
model
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Aerodynamic Shape Optimization

Gradient evaluation

Via the discrete adjoint
method

Integrated with geometry
parameterization, mesh
movement, flow solver

Solution time independent of
number of design variables

76 CHAPTER 4. ANALYTIC SENSITIVITY ANALYSIS OF COUPLED SYSTEMS
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Figure 4-8: Computational time vs. number of design variables for finite differencing, com-
plex step and coupled adjoint. The time is normalized with respect to the time required for
one aero-structural solution.

The cost of computing sensitivities using the coupled-adjoint procedure is in theory inde-

pendent of the number of variables. Using our implementation, however, some of the partial

derivatives in the total sensitivity equation (4.17) are calculated using finite differences and

therefore, there is a small dependence on the number of variables. The line representing

the cost of the coupled adjoint in Figure 4-8 has a slope of 0.01 which is between one and

two orders of magnitude less than the slope for the other two lines.

In short, the cost of computing sensitivities with respect to hundreds or even thousands

of variables is acceptable when using the coupled-adjoint approach, while it is impractical to

use finite-differences or the complex-step method for such a large number of design variables,

even with current state-of-the-art parallel computing systems.

4.5.2 Coupled-Adjoint Solution

The constant terms in the equations for the straight lines of Figure 4-8 represent the cost

of each procedure when no sensitivities are required. For the finite-difference case, this is

Martins, 2002
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Baseline Design
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M M

C.G. location

M

Wing box

Monument

Capacity
Passengers 98
Crew 4

Cabin floor area 593 ft2

Cargo volume 683 ft3

Geometry

Planform area 2177 ft2

Total span 90 ft
Length 74 ft
MAC 44 ft
Aspect ratio 3.7
Wetted aspect ratio 1.6

Weight
MTOW 96,760 lb
OEW 54,710 lb
Payload 23,380 lb

Wing load at MTOW 44 lb/ft2

Cruise conditions
Design range 500 nmi
Altitude 40,000 ft

Reynolds number 69 ×106

Mach number 0.80
xCG/ccenter-line 0.65
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Optimization Problem

Objective:
Minimize drag

Design variables:
B-spline control points

Angle-of-attack

Geometric constraints:
Cabin shape

Span and area

Geometric limits

Optimization under inviscid flow:
Stability-constrained

Optimization under turbulent flow:
Trim-constrained
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Optimization Under Inviscid Flow
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Inviscid Performance

AoA CM Kn L/D

Baseline 1.85 -0.021 -2.8 18.3
Optimized 3.01 0.000 +4.9 39.6

Drag reduction of 55% while creating a

trimmed and stable design

Wave drag eliminated
Induced drag reduced

Stability constraint incurs a 2% drag
penalty

Mach number
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Optimization Under Turbulent Flow
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Turbulent Performance

AoA CM Kn L/D

Baseline 3.96 0.007 -15.6 10.3
Optimized 2.98 0.000 -4.0 16.7

Drag reduction of 40% while creating

trimmed design

Wave drag eliminated
Induced drag reduced
Profile drag reduced

Baseline

Optimized
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Conclusions & Future Work

Conclusions

Aerodynamic shape optimization is a powerful tool for drag
reduction

High-fidelity aerodynamic shape optimization applicable to
full configuration optimization

Future Work

Aerodynamic shape optimization of an equivalent
tube-and-wing design

Aerostructural optimization is required to demonstrate
feasibility of regional jet BWB concept
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Questions

Thank You

Questions?
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