

UNIVERSITY OF TORONTO INSTITUTE FOR AEROSPACE STUDIES

Towards Aerodynamic Shape Optimization of Regional Class Blended-Wing-Body Aircraft for Reduced Environmental Impact

Thomas A. Reist David W. Zingg

May 16th, 2013

1 Introduction

- 2 Blended-Wing-Body
- (3) Aerodynamic Shape Optimization

4 Optimization

5 Conclusions & Future Work

Introduction

Introduction • Motivation

- 2 Blended-Wing-Body
 - Design Benefits
 - Design Challenges
 - Regional BWB Design
- 3 Aerodynamic Shape Optimization
- 4 Optimization
 - Optimization Definition
 - Optimization Under Inviscid Flow
 - Optimization Under Turbulent Flow
- 5 Conclusions & Future Work

Airline Industry Factors

- Increasing demand for air travel and air freight
- Increasing and volatile fuel prices
- Environmental pressures

Environmental Goals

Blended-Wing-Body

IntroductionMotivation

- 2 Blended-Wing-Body
 - Design Benefits
 - Design Challenges
 - Regional BWB Design
- 3 Aerodynamic Shape Optimization
- 4 Optimization
 - Optimization Definition
 - Optimization Under Inviscid Flow
 - Optimization Under Turbulent Flow
- 5 Conclusions & Future Work

The Blended-Wing-Body (BWB)

The tube-and-wing design has served us well for over 60 years...

... But is a step change in configuration design required?

• Aerodynamic

• High wetted aspect ratio gives high lift-to-drag ratio

- Natural 'area-ruling' improves high-speed performance
- Structural
 - Natural spanloading reduces bending loads
- Propulsive
 - Boundary-layer ingesting engines reduce fuel-burn
- Acoustic
 - Body-mounted engines are acoustically shielded
 - Low landing speed reduces airframe noise

Liebeck, JoA, Vol. 41, No. 1, 2004

• Aerodynamic

• High wetted aspect ratio gives high lift-to-drag ratio

- Natural 'area-ruling' improves high-speed performance
- Structural
 - Natural spanloading reduces bending loads
- Propulsive

• Boundary-layer ingesting engines reduce fuel-burn

- Acoustic
 - Body-mounted engines are acoustically shielded
 - Low landing speed reduces airframe noise

Design Benefits

Aerodynamic

• High wetted aspect ratio gives high lift-to-drag ratio

- Natural 'area-ruling' improves high-speed performance
- Structural
 - Natural spanloading reduces bending loads
- Propulsive
 - Boundary-layer ingesting engines reduce fuel-burn
- Acoustic
 - Body-mounted engines are acoustically shielded
 - Low landing speed reduces airframe noise

Liebeck, JoA, Vol. 41, No. 1, 2004

Design Benefits

- Aerodynamic
 - High wetted aspect ratio gives high lift-to-drag ratio
 - Natural 'area-ruling' improves high-speed performance
- Structural
 - Natural spanloading reduces bending loads
- Propulsive
 - Boundary-layer ingesting engines reduce fuel-burn
- Acoustic
 - Body-mounted engines are acoustically shielded
 - Low landing speed reduces airframe noise

Daggett, NASA/CR-2003-212670, 2003

- Aerodynamic
 - Shock-free airfoils with sufficient thickness
 - Maintaining stability and control without a tail
- Structural
 - Design of non-cylindrical pressure vessel for the cabin
 - More complicated load-paths
- Propulsive
 - Robust boundary-layer ingesting engine technology
- Passenger comfort
 - Ride quality

- Aerodynamic
 - Shock-free airfoils with sufficient thickness
 - Maintaining stability and control without a tail
- Structural
 - Design of non-cylindrical pressure vessel for the cabin
 - More complicated load-paths
- Propulsive
 - Robust boundary-layer ingesting engine technology
- Passenger comfort
 - Ride quality

Mukhopadhyay, AIAA 2012-1999, 2012

- Aerodynamic
 - Shock-free airfoils with sufficient thickness
 - Maintaining stability and control without a tail
- Structural
 - Design of non-cylindrical pressure vessel for the cabin
 - More complicated load-paths
- Propulsive
 - Robust boundary-layer ingesting engine technology
- Passenger comfort
 - Ride quality

- Aerodynamic
 - Shock-free airfoils with sufficient thickness
 - Maintaining stability and control without a tail
- Structural
 - Design of non-cylindrical pressure vessel for the cabin
 - More complicated load-paths
- Propulsive
 - Robust boundary-layer ingesting engine technology
- Passenger comfort
 - Ride quality

Liebeck, JoA, Vol. 41, No. 1, 2004

The Regional Jet Segment

- $\bullet\,$ Comprises 30% of global aircraft fleet
- Fastest growing segment over the past 30 years

Source: Regional Airline Association 2011 Annual Report

Passengers	100^{+}
Cargo volume	$683 \ {\rm ft}^3$
Payload	$23,\!380 \text{ lbs}$
Max range	2,000 nmi
Cruise speed	0.80 Mach

[†] Single class at 31" pitch

Similar mission to the CRJ1000ER and E-190 $\,$

Aerodynamic Shape Optimization (ASO)

IntroductionMotivation

- 2 Blended-Wing-Body
 - Design Benefits
 - Design Challenges
 - Regional BWB Design

3 Aerodynamic Shape Optimization

- 4 Optimization
 - Optimization Definition
 - Optimization Under Inviscid Flow
 - Optimization Under Turbulent Flow
- 5 Conclusions & Future Work

$$\text{Range} = \frac{aM}{c_T} \frac{L}{D} \ln \left(\frac{W_0 + W_{\text{fuel}}}{W_0} \right)$$

Flight condition effects Propulsive effects Aerodynamic effects Structural effects

- Drag reduction under inviscid flow
 - Flow model: Euler equations
 - Minimize induced drag
 - Eliminate wave drag
- Drag reduction under turbulent flow
 - Flow model: Reynolds-Averaged Navier-Stokes equations
 - Minimize induced drag
 - Eliminate wave drag
 - Minimize profile drag

Aerodynamic Shape Optimization

Geometry parameterization and mesh movement

- B-spline geometry parameterization
- Linear elastic mesh movement algorithm applied to the B-spline grid
- Robust for large shape changes

Aerodynamic Shape Optimization

Flow solver

- Newton-Krylov-Schur parallel multiblock implicit flow solver
- Euler and Reynolds-Average Navier-Stokes equations with the one-equation Spalart-Allmaras turbulence model

Aerodynamic Shape Optimization

Gradient evaluation

- Via the discrete adjoint method
- Integrated with geometry parameterization, mesh movement, flow solver
- Solution time independent of number of design variables

Optimization

- IntroductionMotivation
- 2 Blended-Wing-Body
 - Design Benefits
 - Design Challenges
 - Regional BWB Design
- 3 Aerodynamic Shape Optimization

4 Optimization

- Optimization Definition
- Optimization Under Inviscid Flow
- Optimization Under Turbulent Flow

5 Conclusions & Future Work

Baseline Design

Capacity		
Passengers	98	
Crew	4	
Cabin floor area	593 ft^2	
Cargo volume	683 ft^3	
Geometry		
Planform area	$2177 \ {\rm ft}^2$	
Total span	90 ft	
Length	74 ft	
MAC	44 ft	
Aspect ratio	3.7	
Wetted aspect ratio	1.6	
Weight		
MTOW	96,760 lb	
OEW	54,710 lb	
Payload	23,380 lb	
Wing load at MTOW	44 lb/ft^2	
Cruise conditions		
Design range	500 nmi	
Altitude	40,000 ft	
Reynolds number	69×10^{6}	
Mach number	0.80	
$x_{\rm CG}/c_{\rm center-line}$	0.65	

Optimization Problem

- Objective:
 - Minimize drag
- Design variables:
 - B-spline control points
 - Angle-of-attack
- Geometric constraints:
 - Cabin shape
 - Span and area
 - Geometric limits
- Optimization under inviscid flow:
 - Stability-constrained
- Optimization under turbulent flow:
 - Trim-constrained

Optimization Under Inviscid Flow

Inviscid Performance

	AoA	C_M	K_n	L/D
Baseline Optimized	$1.85 \\ 3.01$	-0.021 0.000	-2.8 + 4.9	$18.3 \\ 39.6$

- Drag reduction of 55% while creating a trimmed and stable design
 - Wave drag eliminated
 - Induced drag reduced
- Stability constraint incurs a 2% drag penalty

Optimization Under Turbulent Flow

Turbulent Performance

	AoA	C_M	K_n	L/D
Baseline Optimized	$3.96 \\ 2.98$	$0.007 \\ 0.000$	-15.6 -4.0	$\begin{array}{c} 10.3\\ 16.7\end{array}$

- Drag reduction of 40% while creating trimmed design
 - Wave drag eliminated
 - Induced drag reduced
 - Profile drag reduced

Conclusions

- IntroductionMotivation
- 2 Blended-Wing-Body
 - Design Benefits
 - Design Challenges
 - Regional BWB Design
- 3 Aerodynamic Shape Optimization
- 4 Optimization
 - Optimization Definition
 - Optimization Under Inviscid Flow
 - Optimization Under Turbulent Flow

5 Conclusions & Future Work

Conclusions

- Aerodynamic shape optimization is a powerful tool for drag reduction
- High-fidelity aerodynamic shape optimization applicable to full configuration optimization

Future Work

- Aerodynamic shape optimization of an equivalent tube-and-wing design
- Aerostructural optimization is required to demonstrate feasibility of regional jet BWB concept

Thank You

Questions?

Financial support provided by:

