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Airline Industry Factors

o Increasing demand for air travel and air freight

o Increasing and volatile fuel prices

o Environmental pressures
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Business as usual emissions
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The tube-and-wing design has served us well for over 60 years...




Design Benefits

o Aerodynamic
o High wetted aspect ratio gives high lift-to-drag ratio
o Natural ‘area-ruling’ improves high-speed performance
o Structural
o Natural spanloading reduces bending loads
o Propulsive
o Boundary-layer ingesting engines reduce fuel-burn
o Acoustic
o Body-mounted engines are acoustically shielded
o Low landing speed reduces airframe noise
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o Aerodynamic
o High wetted aspect ratio gives high lift-to-drag ratio
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“Supersonic area rule” (M = 1.0)
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o Aerodynamic
o High wetted aspect ratio gives high lift-to-drag ratio
o Natural ‘area-ruling’ improves high-speed performance
o Structural
o Natural spanloading reduces bending loads
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BWB with no AFC
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o Aerodynamic
o Shock-free airfoils with sufficient thickness
o Maintaining stability and control without a tail
o Structural
o Design of non-cylindrical pressure vessel for the cabin
o More complicated load-paths
o Propulsive
o Robust boundary-layer ingesting engine technology
o Passenger comfort
o Ride quality
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o Comprises 30% of global aircraft fleet

o Fastest growing segment over the past 30 years
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Passengers 1007
Cargo volume 683 ft3
Payload 23,380 1bs
Max range 2,000 nmi

Cruise speed 0.80 Mach

f Single class at 31” pitch

Similar mission to the CRJ1000ER and E-190
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Flight condition effects

aM L Wo + Whrael Propulsive effects
Range =——In({——— Aerodynamic effects
cr D Wo Structural effects

o Drag reduction under inviscid flow
o Flow model: Euler equations
o Minimize induced drag
o Eliminate wave drag
o Drag reduction under turbulent flow
o Flow model: Reynolds-Averaged Navier-Stokes equations
o Minimize induced drag
o Eliminate wave drag
o Minimize profile drag



Geometry parameterization and
mesh movement

o B-spline geometry
parameterization

o Linear elastic mesh movement
algorithm applied to the
B-spline grid

o Robust for large shape
changes




Aerodynamic Shape OpH iz o

Flow solver

o Newton-Krylov-Schur parallel
multiblock implicit flow solver

o Euler and Reynolds-Average
Navier-Stokes equations with
the one-equation
Spalart-Allmaras turbulence
model

Cp: -1 -08-06-04-02 0 02 04 0608 1




Gradient evaluation

o Via the discrete adjoint
method

o Integrated with geometry
parameterization, mesh
movement, flow solver

o Solution time independent of
number of design variables
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_ Baseline Design

Capacity
Passengers 98
Crew 4
®  co oo Cabin floor area 593 ft2
M Monument Cargo volume 683 ft3
——  Wing box Geometry
Tm Planform area 2177 £t2
a %% Total span 90 ft
Length 74 ft
() (e MAC 44 gt
% %% Aspect ratio ) 3.7
% %% W Weﬁ:ed aspect ratio 1.6
eig]
% % MTOW 96,760 1b
el e OEW 54,710 1b
(v] MM Payload 23,380 1b
Wing load at MTOW 44 1b/ft?
Cruise conditions
Design range 500 nmi
Altitude 40,000 ft
Reynolds number 69 x10°
Mach number 0.80
Z0G /Ceenter-line 0.65




Opti

©

Objective:
o Minimize drag
o Design variables:
o B-spline control points
o Angle-of-attack
Geometric constraints:
o Cabin shape
o Span and area

©

o Geometric limits

©

Optimization under inviscid flow:
o Stability-constrained
Optimization under turbulent flow:
o Trim-constrained

©




Optimization Under Inviscid Fl;
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Inviscid Performance

|——=—— Baseline
40 SP trim-constrained T
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@ Drag reduction of 55% while creating a i
trimmed and stable design

o Wave drag eliminated
o Induced drag reduced
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Optimization Under Turbule
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AcA Cv K, L/D

3.96 0.007 -15.6 10.3

Baseline
-4.0 16.7

Optimized 2.98  0.000

o Drag reduction of 40% while creating
trimmed design

o Wave drag eliminated
o Induced drag reduced
o Profile drag reduced

Baseline

Optimized
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Conclusions & Future Work

Conclusions

o Aerodynamic shape optimization is a powerful tool for drag
reduction

o High-fidelity aerodynamic shape optimization applicable to
full configuration optimization

Future Work
o Aerodynamic shape optimization of an equivalent
tube-and-wing design
o Aerostructural optimization is required to demonstrate
feasibility of regional jet BWB concept
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